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Abstract Person re-identification receives increasing attentions in computer vision due
to its potential applications in video surveillance. In order to alleviate wrong matches
caused by misalignment or missing features among cameras, we propose to learn a
multi-view gallery of frequently appearing objects in a relatively closed environment.
The gallery contains appearance models of these objects from different cameras and
viewpoints. The strength of the learned appearance models lies in that they are
invariant to viewpoint and illumination changes. To automatically estimate the number
of frequently appearing objects in the environment and update their appearance
models online, we propose a dynamic gallery learning algorithm. We specifically
build up two datasets to validate the effectiveness of our approach in realistic
scenarios. Comparisons with benchmark methods demonstrate promising performance
in accuracy and efficiency of re-identification.
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1 Introduction

Large scale video surveillance has been augmented by the eager request for security purposes. A
critical issue of this task is to automatically associate objects across disjoint camera views, known
as person re-identification. Typically, person re-identification is the problem of discovering a target
person (a probe) from a crowd of people (the gallery) captured by different cameras, at different
locations based on their appearance similarity. This problem is of great interest to numerous
computer vision applications, including public security, long-term object tracking, threat detection
and behavior analysis. Although person re-identification has been studied for many years, it
remains a challenging and unsolved problem due to visual ambiguities and uncertainties caused
by viewpoint and pose variations, illumination changes and occlusions as shown in Fig. 1.

The main difficulty of person re-identification lies in the severe variations from different
cameras and viewpoints that can cause significant changes in appearance. Directly matching
the features of object images from different cameras is unreliable due to feature misalignment
or even missing features. For example, in Fig. 1, the central region of image (a8) is gray in
camera view A, while it becomes plaid shirt in image (b8) in camera view B. Recent studies [1,
3, 5, 7, 9, 11, 19, 24, 25, 31, 34] handle the problem of cross-view variations by seeking a
more distinct and reliable low-level representation of human appearance. The most commonly
used features include: color [5, 7, 9, 19], texture [5, 9, 11, 25], covariance features [1, 19, 25],
HOG (Histogram of Oriented Histograms) like signatures and interest points [11, 34]. How-
ever, it is extremely difficult to compute both distinct and reliable low-level features under
severe variations in different camera views.

To bridge the human appearance changes across cameras, we present an effective method
for person re-identification. Our method focuses on re-identification in a relatively closed
environment, such as a school, an office building and a house, where most observed objects
appear repeatedly in different locations. We refer to these objects as regular persons and their
features as regular features. Even in a relatively closed environment, unknown or new objects
could also appear. We refer to these objects as strangers and their features are referred to as

Camera A Camera B

(a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8) (b8) (b7) (b6) (b5) (b4) (b3) (b2) (b1)

Fig. 1 Person re-identification using our multi-view gallery. Images on the left of the dashed black line are from
camera view A and those on the right are from camera view B. Camera A captures the front and back views of an
object and camera B captures the left and right views. Our method finds the identity of the target by comparing
visual similarity with the appearance feature in the corresponding camera and viewpoint
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stranger features. We assume that a camera network is mounted in this environment. These
cameras will capture different aspects of appearance for those regular persons as they move
from one Field of View (FoV) to another. With this appearance information, we can build a
multi-view gallery for these regular persons. This gallery contains the appearance models of
these objects in each camera and viewpoint. When a target enters, we can confirm his/her
identity by searching the gallery in the corresponding camera and viewpoint. For example, in
Fig. 1, camera A records the frontal and back views of the objects while camera B records the
left and right views. The appearance models corresponding to the two cameras and four views
are stored in our multi-view gallery. The target person in camera A, with a frontal view, finds
his identity by comparing appearance models in the same camera and viewpoint. If the target
object cannot be associated with any one of the gallery models, we will treat the object as a
stranger. In some cases, like threat detection, suspicious check and behavior analysis, keep
tracking of the strangers over different cameras is also important as they are more suspicious.
Using the appearance information of the object and the topological information of the camera
network, keep tracking of the strangers is also achievable.

The number of regular persons and the appearance of the regular persons will change over
time, e.g., the illumination conditions are significantly different for images (a1) and (a2) in
Fig. 1. In order to deal with these changes, we propose a dynamic gallery learning algorithm.
The algorithm iterates between the following two steps: (1) Automatically estimate the current
number of regular persons by employing clustering quality analysis. When a regular person
leaves or a new object comes into the environment for a long time, the corresponding
appearance models will be deleted or added, yielding a new gallery. (2) Establish the
correspondence between the newly obtained gallery and the old gallery. The newly obtained
gallery also incorporates illumination changes of each camera view over time. Experimental
results validate the effectiveness of the algorithm.

This paper extends our previous work [33], which focused on generating a static multi-view
gallery for re-identification. In static gallery learning, we need to set the number of regular
persons manually, which prevents the algorithm from working automatically. Besides, the
appearance models contained in the static gallery cannot be updated along time. In this paper,
we propose a new algorithm to learn and update the gallery dynamically. In addition, more
comparisons are made with existing methods. Our approach is inherently different from
existing works that focus on developing reliable features to deal with cross view variations.
Since the appearance models for each object are specific to a certain camera and viewpoint,
existing feature representations can be adopted to describe an object. In summary, the main
contributions of this work are:

& While most existing works on person re-identification focus on new visual features and
models that deal with cross-view variations, we propose to build a multi-view gallery by
accumulating appearance information from different cameras and viewpoints over time
and use this gallery to perform re-identification. We show that the multi-view gallery
improves person re-identification accuracy because of its ability to deal with unreliable
matching caused by feature misalignment or missing features.

& We propose an algorithm to build and update the gallery dynamically. The dynamic gallery
is adaptive to changes of appearance and the number of regular persons in the environ-
ment. To the best of our knowledge, this is the first attempt to learn a dynamic multi-view
gallery for person re-identification. Experiments on video sequences collected from both
indoor and outdoor environments demonstrated the effectiveness of the algorithm.
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The rest of the paper is organized as follows. Section 2 describes the related work on person
re-identification. Section 3 presents the idea of gallery learning and the dynamic gallery
learning algorithm, which is followed by experiments in Section 4. Finally, conclusions and
further perspectives are given in Section 5.

2 Related work

Person re-identification researches can be categorized into two classes: learning-based methods
and direct methods. The first class uses a set of training images captured from different objects
to learn a discriminative feature space. Essentially, these techniques assume that knowledge
extracted from the training set could be generalized to new samples. Discriminative models
like boosting and SVM are widely used for feature learning [2, 4, 12, 14, 20, 28, 29]. Gray
et al. and Bak et al. [2, 4, 12] employed boosting strategy to select the most discriminative
subset of features. Prosser et al. [28] formulated person re-identification as a ranking problem.
An informative subspace was learned where the potential true match gets highest ranking.
Metric learning algorithms have also been applied to learn task-specific distance functions to
suppress cross-view variations [8, 18, 21, 22, 27, 35]. Zheng et al. [35] proposed the
Probabilistic Relative Distance Comparison (PRDC) that maximizes the probability of a pair
of true match having a smaller distance than that of a wrong matched pair. Li et al. [22]
presented to learn a specific metric for each query-candidate set by transferred metric learning
framework. Mignon et al. [27] designed a metric for identification under pairwise constraints
in high dimensional space. Li et al. [21] proposed to learn a decision function for verification
combining distance metric learning and locally adaptive thresholding rule.

One problem with these methods is that, they require training data with identity labels,
which is impractical in large scale surveillance scenarios. Besides, inter-camera variations can
be significantly different, knowledge learned from the training data cannot be generalized to
testing samples. As a result, they have to be frequently re-trained/updated when facing realistic
scenarios.

The second class of methods is direct methods, which focus on reliable feature represen-
tation [1, 3, 5, 7, 9, 11, 19, 24, 25, 31, 34]. These methods do not consider training data but
rather working on each object directly. Wang et al. [31] extracted discriminative features by
modeling spatial distributions of appearance relative to body parts. Farenzena et al. [9]
proposed Symmetry Driven Accumulation of Local Features (SDALF). They partitioned
object images into symmetry and asymmetry parts. Color and texture were combined to
describe each part, yielding state-of-the-art results on several widely used datasets. Cheng
et al. [7] estimated human body configurations utilizing the pictorial structures and computed
similar visual features as SDALF on different body parts. Bak et al. [1] combined local
statistics of color and gradient to construct a covariance descriptor. Ma et al. [25] proposed
to combine biologically inspired features and covariance descriptors to handle background and
illumination changes. Zhao et al. [34] developed an unsupervised saliency learning strategy to
extract discriminative features. These works share the same general idea: a feature vector to
represent an object and a distance measure to compare similarity. When selecting the feature
vector one has to make sure that it is both discriminative and invariant.

In general, learning-based methods produce higher performances than direct methods.
However, they are limited to practical usage. The main limitation of the learning-based
methods is that image representations they employed are complex, which prohibit them from
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real-time applications. To cope with these problems, we propose an effective and efficient
framework for person re-identification and apply it to video sequences acquired when people
performing their daily activities.

Our method follows the classical scheme of Detection-Recognition-Identification
(DRI). There are other methods that follow the DRI scheme for robust matching and
tracking [10, 13, 15, 16]. For instance, Javed et al. [15] explicitly modeled the brightness
transfer function for a pair of cameras to compensate for illumination variations. Simi-
larly, Jeong et al. [16] treated the appearance model distortion between two non-
overlapping cameras by learning a color transfer function. Both methods assume that
the conditions under which these functions are estimated remain fixed, which is inap-
propriate in real surveillance. Hamdoun et al. [13] performed person re-identification by
matching SURF interest-points descriptors collected on short video sequences. The
method proposed by Gandhi et al. [10] shares a similar spirit to our work, which aims
to build a signature for each person by combining information of the object from
different camera views. But their panoramic appearance maps are built using multiple
overlapping cameras. The panoramic appearance maps are not available when the
cameras are of non-overlapping views.

3 Dynamic multi-view gallery learning for person Re-identification

Once an object has been detected and tracked with a bounding box in multiple frames, we
begin the process to learn a dynamic multi-view gallery. The building process mainly consists
three phases:

(1) Collect appearance features of each object using the tracking results and separate the
features into four viewpoints.

(2) Learn a multi-view gallery that contains the appearance information of each object from
different cameras and viewpoints.

(3) Dynamically update the multi-view gallery in order to adapt to the changes over the
number of regular persons and appearance of the regular persons.

In the following, we first illustrate our problem setup and feature collection. Then we
describe and analyze the above mentioned three phases accordingly.

3.1 Problem setup and feature collection

Our multi-view gallery divides appearance features into four viewpoints: left, right, front and
back. The features are collected from the tracks of each object. From each track, we can extract
at most 4 average appearance features: Aleft, Aright, Afront and Aback, which describe an object’s
appearance information from 4 different viewpoints. If the object does not change his/her
walking direction within the FoV of a camera, we can extract only one average feature from
this track. By Baverage^, we mean that the features taken from all the frames of this track under
the same viewpoint are averaged.

We use the Fuzzy Space Color Histogram (FSCH) [32] to describe an object in each camera
and viewpoint because of its efficiency and effectiveness. FSCH feature A can be computed by
using the following functions:
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A Rbc;Gbc;Bbc; xbc; ybcð Þ
¼

X
R;G;B;x;y

h R;G;B; x; yð Þw1 R−Rbcð Þw2 G−Gbcð Þw3 B−Bbcð Þw4 x−xbcð Þw5 y−ybcð Þ ð1Þ

h R;G;B; x; yð Þ ¼ 1=ToatalPixels; pixel x; yð Þ ¼ R;G;B½ �
0 ; otherwise

�
ð2Þ

wi xð Þ ¼ wi −xð Þ
wi 0ð Þ ¼ 1

wi x1ð Þ≤wi x2ð Þ; x1j j > x2j j

8<
: ð3Þ

where R, G, B are RGB values of the pixel at position (x, y), the subscript bc denotes the bin
center, function h is the space color histogram, TotalPixels is the total number of pixels in the
image, and wi(x) is the unary membership function. The FSCH feature incorporates space
information into the 3D color histogram and is characterized by Bsoft quantization^.

The FSCH feature is stored as a structure feature defined as:

feature ¼ A;C;V ; TEN ; TEX ; LEN ; LEX ; IDPð Þ ð4Þ
where A is the appearance feature, C and Vare the camera and viewpoint identities, TEN/TEX is the
entrance/exit timestamp (the timestampwhen the corresponding track begins/ends), LEN/LEX is the
entrance/exit point (the start/end point of the corresponding track), and IDP is the object’s identity.

The features are stored in the feature pool. After collecting a set of features, we separate
them into several groups so that each member within the same group shares the same camera
identity C and viewpoint identity V, as defined in Eq. (5).

group Ci;V j
� � ¼ feature feature:C ¼ Ci; feature:V ¼ V j

��� � ð5Þ

3.2 Multi-view gallery learning

The aim of this phase is to establish a multi-view gallery that contains the appearance
information of the objects in different cameras and viewpoints using the features collected in
section 3.1. First, we cluster the member features in each group according to appearance
similarity. Second, we associate the clusters of the same object in different groups using the
topology information. Finally, we merge all the clusters so that the final number of clusters
equals the number of regular persons.

Feature clustering according to appearance The member features in each group are
separated into several clusters by calculating their appearance similarity using the following function:

Similarity A1;A2ð Þ ¼

XN
i¼1

Ai
1−A1

� 	
Ai
2−A2

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Ai
1−A1

� 	2XN
i¼1

Ai
2−A2

� 	2vuut
ð6Þ
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whereA ¼ 1
N ∑

N

i¼1
Ai is the average feature,N is the length of the feature vector, and i indicates the i-th

dimension of the feature vector. In Fig. 2, two cameras C1, C2 and four viewpoints V1, V2, V3, V4
yield eight groups. The symbols ○, △ and ☆ denote three clusters. Each cluster represents the
appearance of a regular person in the corresponding camera Ci and viewpoint Vj. The number of
clusters equals the number of regular persons. We manually set the number of clusters in advance.

Associating the clusters in different groups As illustrated in Fig. 2, different objects
within each group have been distinguished. The clusters of the same object among different
groups must be associated. This step is performed using the topology information of the
camera network.

For example, cluster △ in group (C1,V2) and cluster △ in group (C2,V1) are associated (see
linkage1 in Fig. 2). Figure 3 explains the reason for this association. The small circles in cluster
△ represent the features contained therein. These features, which are members of the clusters,
shall be referred to as member features. There is a passage between camera C1 and camera C2,
which requires an average of 10 s to walk through. Four pairs of member features in cluster △
in different cameras are connected by directed arcs, because the actual time interval between
TEX and TEN roughly matches the average time spent in the passage. This phenomenon occurs
four times and only five member features exist in cluster △ of group (C2,V1), indicating a
strong correspondence between the two clusters. Therefore, we can infer that cluster △ in group
(C1,V2) and cluster △ in group (C2,V1) belong to the same object and can be associated.

Specifically, assume that F and G are two clusters in two different groups:

F⊂group1
G⊂group2

�
group1≠group2 ð7Þ

f and g are two features in F and G respectively. Let Taverage denotes the average time spent
from the exit point of f to the entrance point of g. If the passage does not exist, Taverage is
infinity. As f and g are stored as structure, the actual exit and entrance timestamps are f. TEX
and g. TEN respectively (see Eq. 4). So the difference between the actual time gap and the
average time can be computed as:

V1V1 V2V2

V3V3 V4V4

V1 V2

V3 V4

C1 C2

linkage1

linkage2

linkage3

linkage5

linkage6

linkage4

Fig. 2 Illustration of multi-view gallery learning

Multimed Tools Appl (2017) 76:217–241 223



Td ¼ g:TEN− f :TEX−Taverage
�� �� ð8Þ

The correspondence strength of f and g is computed as:

str f ; gð Þ ¼ 1−Td=σTaverage; Td=Taverage≤σ
0 ; otherwise

�
ð9Þ

where the parameter σ is a constant ranging from 0 to 1, which is used to control the tolerance
to Td. We set it to 0.4 in the experiments. A small Td will lead to large str. The correspondence
strength of clusters F and G is computed as:

STR F;Gð Þ ¼
XM ;N

m¼1;n¼1

str f m; gnð Þ

min M ;Nð Þ ð10Þ

whereM and N are the numbers of features in F and G respectively. If STR (F,G) is larger than
a threshold (set to 0.3 in our experiment), we can conclude that cluster F and cluster G belong
to the same object. As shown in Fig. 2, the clusters belong to the same object are connected by
solid directed arcs.

Merging into the final clusters It is possible that the number of linkages is higher than the
number of regular persons after feature correspondence. As shown in Fig. 2, the 6 linkages should
be further merged into 3 because there are three regular persons in the example. If the number of
regular persons is NP, we choose NP linkages as the core for the upcoming merging process.

Given NP core linkages, the remaining is merged with the most similar one according to the
average appearance similarity using Eq. (6). As depicted by the three dashed directed arcs in
Fig. 2, linkage1 and linkage6, linkage2 and linkage4, and linkage3 and linkage5 are merged into
three final linkages.

The output of the framework is a gallery of regular persons defined as:

gallery ¼ APi;C;V i∈ 1;NP½ �;C∈ 1;NC½ �j ;V∈ 1;NV½ �� � ð11Þ
where NP is the number of regular persons, NC is the number of cameras, and NV is the number
of viewpoints. Given the person identity IDP, camera identity C and viewpoint identity V, we

317EXT

4EXT

631EXT

104EXT

954EXT

832EXT

209EXT

325ENT

15ENT

641ENT

3215ENT
113ENT

Time Gap 10

Actual 8

Time Gap 10

Actual 11

Actual 10

Actual 9

Time Gap 10

Time Gap 10

Cluster in group(C2,V1)Cluster in group(C1,V2)

Fig. 3 Associate clusters in different groups
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can find the appearance model A of the person from the gallery. The appearance models are the
features averaged over all member features in each cluster. Figure 4 gives an overall review of
establishing the multi-view gallery. The procedures of static gallery learning are summarized in
Algorithm 1.

Algorithm 1: The procedures of the static gallery learning

Input:

Appearance feature A, camera/viewpoint identity: C, V; entrance/exit timestamp: TEN, TEX; entrance/exit point:
LEN, LEX; person identity: IDP.

Output:

A multi-view gallery of regular persons

1: Separate features in each camera and viewpoint into several clusters according to appearance feature A. The
number of clusters equals the number of regular persons.

2: Associate two clusters in different cameras and viewpoints using the topology information of the camera
network. Each association is denoted by a linkage.

3: Merge all the linkages into NP core linkages according to the average appearance similarity of the member
features contained therein.

4: Establish the multi-view gallery of regular persons, which contains the appearance features of the regular
persons in the corresponding camera C and viewpoint V.

3.3 Dynamic learning of the multi-view gallery

For the multi-view gallery learning in section 3.2, we need to set the number of regular persons
manually. Human intervention prevents the whole algorithm from working automatically. In
addition, gallery learning is done during the training phase and could not be updated along
time.

Multi-View
Gallery

Camera A Camera BCamera BCamera A

(a) (b)
Fig. 4 Establishing the multi-view gallery. a Collecting image features from different cameras and viewpoints. b
Image clustering according to visual similarity, and establishing the multi-view gallery
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In this section, we present a dynamic algorithm to learn the multi-view gallery of regular
persons. The algorithm iterates the following two phases. (1) Estimating the number of regular
persons: given the feature pool and the initial interval [n1, n2], automatically decide the best
number of clusters nbest. (2) Establishing the correspondence between the new gallery and the

old gallery: given OldGallery ¼ P1;P2;⋯;PNPf g and NewGallery ¼ P1
0
;P2

0
;⋯;PNP

0
0

n o
,

find the correspondence among members in each gallery.

Estimating the number of regular persons Given the feature pool, we separate its
member features into several groups so that each member within the same group shares the
same camera identity C and viewpoint identity V. In each group (C, V), if we cluster its features
according to appearance A, the number of clusters should be equal to the number of regular
persons in that group. Therefore, the problem can be modeled as: how many clusters exist in a
given set of data. For this purpose, we use k-means to estimate the number of clusters and
assume that the true number of clusters ntrue lies within an interval of positive integers, denoted
as [n1, n2]. ntrue is estimated through the interval [n1, n2] one by one. In this phase, we first
discuss how to set the interval dynamically in order to contain the actual number of regular
persons, and then we discuss how to make the best decision of ntrue.

Our dynamic gallery learning algorithm is data triggered. Assume that the r-th
estimated number of regular persons is nbest (r). When a new track is recorded, the
feature pool will be updated and the gallery will be learned once again. The new n1
and n2 will be set according to:

n1 r þ 1ð Þ ¼ nbest rð Þ−nhalf
n2 r þ 1ð Þ ¼ nbest rð Þ þ nhalf

ð12Þ

where nhalf is a constant larger than 1, which controls the width of the interval.

When a new track is added into the feature pool, the true number of regular persons ntrue
(r+1) does not deviate significantly from the previous true number ntrue (r) (see Eq. (13)). It
may remain unchanged because there is no new regular person appears, increase by 1 because
a new regular person is identified, or decrease by 1 because an existing regular person has not
appeared for a long time and his features have been overwritten in the feature pool by the
features of the newly appearing person.

ntrue r þ 1ð Þ−ntrue rð Þj j≤1 ð13Þ
If the previous estimation of the number of regular persons is correct, from Eqs. (12) and

(13) we can infer that the interval [n1, n2] will include the true number of regular persons, as
shown in Eq. (14):

ntrue rð Þ ¼ nbest rð Þ⇒ntrue r þ 1ð Þ∈ n1 r þ 1ð Þ; n2 r þ 1ð Þ½ � ð14Þ
Otherwise, if nbest (r) is incorrectly estimated and deviates too much from ntrue (r), then ntrue

(r+1) may lie outside the interval [n1 (r+1), n2 (r+1)]. This inevitably happens at the
initialization of nbest, when we manually set n1 and n2. At initialization, we set nbest (0)=2,
because k-means clustering requires the minimum number of clusters to be set to 2.With more
tracks being recorded, the interval [n1, n2] would slowly move towards ntrue and finally include
it. Because the selected number from [n1, n2] closest to ntrue will have a higher evaluation
score, which will be discussed later.
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After getting the interval [n1, n2], we define a Score function to evaluate the quality of the
clustering results [17] in one group (C, V), and ntrue equals the best number of clusters nbest,
which gets the highest evaluation score according to:

nbest ¼ argmax
n1 ≤nk ≤n2

Score results data; nkð Þð Þð Þ ð15Þ

where results is the k-means clustering result of the features data with nk clusters. Assume that
the total number of members in data is Ndata, and di is assigned to cluster k. Then Score is the
average clustering quality Q of each member di in data:

Score resultsð Þ ¼
X
i¼1

Ndata

Q results; dið Þ=Ndata ð16Þ

Q results; dið Þ ¼ distinter−distintrað Þ=max distintra; distinterð Þ ð17Þ

distinter results; dið Þ ¼ min
j≠k

distance center j; di
� �� � ð18Þ

distintra results; dið Þ ¼
X

d∈k;d≠di

distance d; dið Þ= Nk−1ð Þ ð19Þ

where distinter is the inter-cluster distance between di and the center of its nearest neighbor cluster
(excluding cluster k), distintra is the average distance between di and other members in the same
cluster k, and Nk is the number of data in cluster k. The average clustering quality Q of each
member di is a measure of how similar that member to members in its own cluster vs. members in
other clusters. In practice, we use the Matlab built in function Bsilhouette^ to get this value.

Strangers will appear even in a relatively closed environment. The presence of stranger
features would lead to an estimated number of regular persons that is higher than the true value.
We propose an algorithm to deal with this problem. Figure 5a illustrates k-means clustering result
with 3 centers. The stranger feature is assigned to cluster ○. Evaluation sore of this result is 0.8.
Figure 5b illustrates the result of clustering with 4 centers. The stranger feature forms an

Stranger feature classified to cluster

Evaluation score with 3 clusters: 0.8

Stranger feature classified to independent cluster

Evaluation score with 4 clusters: 0

Delete cluster evaluation score with 3 clusters: 0.9

(a) (b)
Fig. 5 Illustration when stranger feature forms an independent cluster
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independent cluster □. This cluster has few members in it. We regard it as stranger
feature and delete this cluster. Now we have 3 clusters. The evaluation score of this
clustering (after deleting stranger feature) is 0.9. We choose the clustering result with the
highest score as the optimal clustering. So for data in Fig. 5, the 3 clusters in Fig. 5b,
after deleting the independent cluster □, are the optimal clustering results. The quality
evaluation method is summarized in Algorithm 2. Steps 5~7 are designed to remove the
impact of the stranger features. Score [n=nactual] is the clustering score with nactual
centers (without stranger features deleted).

The above evaluation method is based solely on the data in one group (C, V). We need to
consider all groups for decision making. Equation (15) can be replaced by:

nbest ¼ argmax
n

X
C;V

Score results dataCV ; nð Þð Þ
 !

ð20Þ

where dataCV are the data in group (C, V).

Algorithm 2: Clustering quality evaluation in one group

Input:

Data in the group, the interval of the number of regular persons [n1, n2]

Output:

An array of the clustering quality

1: Allocate an array Score [n1:n2] for the clustering quality

2: Initialize the whole array Score with zeroes

3: for (n=n1; n<=n2; n++) do

4: Cluster the data in the group, the number of clusters is set to n

5: Delete clusters that contain few members and the number of clusters is changed from n to nactual
6: Compute the clustering score S (with stranger features deleted) with cluster number nactual according to
Eqs. (16) and (19)

7: Score=max (Score [n=nactual], S)

8: end for

Establishing the correspondence between the New gallery and the Old gallery The
gallery defined in Eq. (11) can be written in the following form:

gallery ¼ P1;P2;⋯;PNPf g
Pi ¼ APi;C;V i∈ 1;NP½ �;C∈ 1;NC½ �;V∈ 1;NV½ �j� � ð21Þ

Assume that the old gallery is represented by Eq. (22) and the newly constructed gallery
represented by Eq. (23). Note that the number of persons in the old gallery is NP, which is not
necessarily equal to its counterpart NP′ in the new gallery.

OldGallery ¼ P1;P2;⋯;PNPf g ð22Þ
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NewGallery ¼ P1
0
;P2

0
;⋯;PNP

0
0

n o
ð23Þ

As discussed above, Pi and Pi′ do not necessarily represent the same person.
Correspondence should be established among the members in the old gallery and
those in the new gallery Eq. (24):

Correspondence ¼ i; jð Þ SamePerson Pi;P j
0

� 	��� ¼ true
n o

ð24Þ

The function SamePerson is the process to estimate if the two objects are the same one,
which is outlined in steps 4~9 in Algorithm 3.

In order to establish the correspondence between the old gallery and the new gallery, we
need to calculate the similarity among their members. We construct a matrix similarityNpNp
′whose elements satisfy:

similarityi j ¼ Similarty Pi;Pj
0

� 	
ð25Þ

Similarity Pi;P j
0

� 	
¼

X
C;V

Similarity APi;C;V ;A
0

P
0
j;C;V

� �

Ncombination
ð26Þ

APi;C;V is the appearance feature vector of person Pi in camera C and viewpoint V in the old

gallery. A
0

P
0
j;C;V

is the appearance feature vector of person Pj′ in the same camera and viewpoint

in the new gallery. Ncombination is the number of combinations of camera C and viewpoint V
which observe the appearance model of both APi and A

0

P
0
j
. Ncombination is usually smaller than

NC×NV. Algorithm 3 outlines the correspondence approach. Steps 8 and 9 ensure that once a
person in the Oldgallery corresponds to a person in the Newgallery, it cannot correspond to
any other persons.

Once a target person O is being tracked, we obtain its camera identity C and viewpoint
identity V. Re-identification is done by comparing the appearance of the target person AO with
the appearance model of all persons in camera C and viewpoint V in the gallery (see Eqs. (27)
and (28)). Note that the topology information of the camera network is not used in re-
identification.

IDPMaxSimlarity ¼ argmax
IDP

Similarity AO; gallery IDP;C;Vð Þð Þð Þ ð27Þ

IDO ¼ IDPMaxSimlarity ifMaxSimilarity > θ
stranger otherwise

�
ð28Þ

where IDO is the identity of the target person O, and θ is the similarity threshold we choose
when we can get the best performance on this dataset. Similarity is the similarity function
defined in Eq. (6).
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Algorithm 3: Establishing the correspondences between the person in the old gallery and that in the new gallery

Input:

Old gallery and new gallery

Output:

The new gallery aligned with the old one

1: Construct the similarity matrix similarityNpNp according to Eqs. (25), and (26)

2: Set a similarity threshold θ

3: loop

4: Find the maximum element similaritymax in similarityNpNp′
5: Record row number i0 and column number j0 of the maximum element

6: if similaritymax> θ then

7: The j0-th person in the new gallery is the i0 -th person in the old gallery

8: All elements in the i0 -th row in similarityNpNp are set to zero

9: All elements in the j0 -th column in similarityNpNp are set to zero

10: else

11: Break loop

12: end if

13:end loop

3.4 Time complexity analysis

For the static gallery learning in section 3.2, the main computational cost is k-means clustering
in each group. The time complexity for k-means clustering is O (K·N·I), where K is the
number of clusters, N is the number of data, and I is the number of iterations required for
convergence. Since k-means clustering is implemented in each group (C, V), the time
complexity can be estimated by:

O
X
C;V

NP⋅NC;V ⋅I

 !
ð29Þ

where NP is the number of regular persons, NC,V is the number of data in group (C,V). Equation
(29) can be further simplified to:

O
X
C;V

NP⋅NC;V ⋅I

 !
¼ O NP⋅I ⋅

X
C;V

NC;V

 !
¼ O NP⋅I ⋅Ndð Þ ð30Þ

where Nd is the total number of data involved in static gallery learning.
For online gallery learning, the gallery updates when a new track is recorded. For each

updating, the time complexity lies in estimating the number of persons using different clusters
chosen from [nbest-nhalf, nbest+nhalf]. The time complexity can be denoted as:

O I ⋅Nd ⋅
Xnbestþnhalf

ntest¼nbest−nhalf

ntest

0
@

1
A ð31Þ
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where nbest is the estimated number of regular persons before this updating. nhalf is roughly half
of the estimating width nwidth. Equation (31) can be simplified to:

O I ⋅Nd ⋅
Xntest¼nbestþnhalf

ntest¼nbest−nhalf

ntest

0
@

1
A ¼ O I ⋅Nd ⋅ 2nhalf þ 1

� �
⋅nbest

� � ¼ O I ⋅Nd ⋅nwidth⋅nbestð Þ ð32Þ

The computational cost for person re-identification lies in the comparison of the target
person and the appearance models in the gallery. The time complexity is O (Np), where NP is
the number of regular persons.

4 Experiments and analysis

In this section, we present the experimental results of the proposed method in two different
multi-camera scenarios. The scenarios different from each other both in terms of camera
topologies and scene illumination conditions, and include both indoor and outdoor settings.
In both scenarios we use the method proposed in [30, 36] to separate the foreground from the
background. Foreground regions with large area are treated as moving objects. The bounding
box of the corresponding foreground area is treated as the object’s bounding box. In order to get
the correct track that belongs to the same object, we associate different bounding boxes based
on the appearance similarity of the objects and the physical positions of the bounding boxes.
Bounding boxes belonging to the same object form the track of theObject. We also use some
strategies to detect occlusions. When occlusions occur we did not extract appearance features.

We use the learned gallery to re-identify persons. The accuracy depends on two factors: 1)
whether the target person is a regular person and 2) if the target is a regular person, confirm his/
her identity in the gallery. The first factor is determined by the similarity threshold θ. The second
factor is determined by the quality of the gallery. Re-identification accuracy and the wrong
number of decisionsmade during evaluating the two factors are given in the experimental results.

The indoor dataset is used to assess the feasibility of our method. The outdoor dataset
incorporates much noises compared with the indoor dataset, and we use it to test the robustness
of the proposed method. In order to demonstrate the effectiveness of dynamic gallery learning,
it is compared with the static gallery learning method [33] and two invariant feature based
methods: SDALF [9] and FSCH [32].

4.1 Indoor experiments

The indoor dataset is composed of four video sequences captured by four non-overlapping
cameras mounted inside a building. The entrance/exit of a camera and the hidden path that
connects an entrance-exit pair are estimated using the method proposed in [6, 26]. It has to be
pointed out that, an entrance is also an exit when an object leaves the FoV through it and vice
versa. The estimated topology information of the indoor camera network is shown in Fig. 6.
The ellipses denote the entrances/exits, and the straight lines denote the hidden paths that
connect an entrances-exits pair. Each path has a time gap attached. The topology information
can be learned and updated online. We load the static topology information and disable the
updating of it in order to concentrate mainly on dynamic gallery learning.

There are four regular persons in the indoor camera network (see Fig. 7). A total of 438
tracks were obtained and 28 of them belong to the strangers. From Fig. 7, we can see that: 1)
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person 1 and person 2 look very similar in appearance in camera 1 and 2, 2) the global
illumination in camera 3 is much better than that in the other cameras and 3) people only
present their left and right views in cameras 1 and 2, and front and back views in cameras 3
and 4. Viewpoints are decided by the directions of the paths each camera covers.

The first experiment is carried out to see whether our system can obtain the true number of
regular persons. After initialization, the feature pool keeps collecting data until reaches its

Fig. 6 Camera topology information of the indoor scenario. The ellipses denote the entrances/exits. The blue
lines denote that there is a hidden path connecting the entrance-exit pair

Fig. 7 Sample images of different objectss in each camera and viewpoint
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maximum size. Let n be the tested number of regular persons (number of clusters). Figure 8a
shows the curves of clustering quality (evaluation score) using different n versus time. The
similarity threshold described in section 3.3 is also depicted. Note that the axis Btime^ is not
the actual time, but rather the number of tracks. We use the axis Btime^ because our system is
data triggered. As shown in Fig. 8a, all curves have quality of zero at the beginning. As time
goes by, the curves corresponding to n=2, n=3 and n=4 get the highest quality (among all
curves at the same time). Finally, the curve corresponding to n=4 gets a stable highest quality,
which is our desired result because the true number of regular persons is 4. Let nbest be the best
estimated number of regular persons. Figure 8b shows the curve of nbest versus time. We can
see that it roughly follows the quality curve which gets the highest quality shown in Fig. 8a.
The small circles in Fig. 8b indicate the time when the gallery is updated (sampled every 10
points to get a clear view). The locations of these circles indicate that the main phase of the
gallery learning module runs only when nbest stabilizes for a pre-defined period of time and its
clustering quality is higher than the quality threshold.

As for the correspondence between persons in the old gallery and those in the new gallery,
no correspondence error occurs. We use the dynamic gallery for re-identification. The results
are shown in Table 1, where column BFeatures^ is the features used in each method. For
dynamic gallery learning and static gallery learning, besides the FSCH feature stated before,
we also test its combination with the height-width aspect ratio (AR) of the object. In this case

Fig. 8 Illustration of decision making on the number of regular persons in the indoor dataset. a Clustering
qualities. b The best number of clusters versus time

Table 1 Re-identification results of indoor experiment

Methods Features Best θ Tracks
evaluated

Correct
decisions

Incorrect
type 1

Incorrect
type 2

Accuracy
(%)

Dynamic gallery FSCH 0.6 221 212 8 1 95.93

Dynamic gallery FSCH+AR 0.75 221 217 4 0 98.19

Static gallery [33] FSCH 0.35 221 210 10 1 95.02

Static gallery [33] FSCH+AR 0.55 221 216 5 0 97.73

Invariant feature [32] FSCH 0.25 221 172 20 29 77.83

Invariant feature [9] SDALF 0.20 221 169 25 27 76.47

Multimed Tools Appl (2017) 76:217–241 233



we use the BFSCH+AR^ feature for both gallery learning and re-identification. We get the
AR of each object using the bounding boxes of him/her in each camera and viewpoint.
Column BBest θ^ is the similarity threshold that produces the best re-identification result
on this dataset (θ controls the decision of the designation of a stranger or a regular person
(see Eq. (28)). Column BTracks evaluated^ is the number of tracks evaluated in each
experiment. BIncorrect type 1^ is the number of wrong decisions made during estimating
whether the target is a regular person (factor 1), BIncorrect type 2^ is the number of wrong
decisions made during validating the identity of the target (factor 2). The number of
incorrect type 2 reflects the quality of the learned gallery. BAccuracy^ is the re-
identification result corresponding to best θ.

In static gallery learning, all the 438 tracks are divided into a training set and a testing set.
The training set is used to learn a static gallery, which is used to re-identify persons in the
testing set. As a result, a total of 221 tracks are used for testing. To make fair comparisons, we
use the same 221 tracks to test the performance of dynamic gallery learning, FCSH and
SDALF. For our dynamic gallery learning method, 150 tracks from the training set are used to
learn an initial gallery. For FSCH and SDALF, we manually create a gallery with regular
person represented by his/her average FSCH or SDALF feature, regardless of the camera
identity or viewpoint identity.

From Table 1 we can see that, when using the FSCH only, the accuracy using dynamic
gallery and static gallery is 95.93 % and 95.02 % respectively. When combining FSCH with
AR, the accuracies reach to 98.19 % and 97.73 %. Dynamic gallery learning is slightly better
in both cases. As the illumination does not change significantly for the indoor dataset, the
number of incorrect type 2 is the same for both methods. These results indicate that our
dynamic gallery learning does not reduce the quality of the gallery. In addition, dynamic
gallery learning does not need human intervention. The gallery can be learned and updated
while re-identification is in progress. Dynamic gallery learning significantly outperforms
FSCH and SDALF. The reason is that, FSCH and SDALF focus on features that are invariant
and discriminative to describe a person, regardless of the differences in cameras and view-
points. The features discriminative in one setting may not be appropriate for distinguishing
objects in another setting. Unlike FSCH and SDALF, our method seeks to build a gallery to
facilitate re-identification. The gallery contains the appearance models of an object in different
cameras and viewpoints. Re-identification is performed by comparing the target and the
appearance models in the corresponding camera and viewpoint. Even so, FSCH and SDALF
are valuable since they can be used in any scenario. Meanwhile, our gallery learning approach
should be used in a relatively closed environment where most objects appear frequently.

4.2 Outdoor experiments

The outdoor dataset consists of four videos taken from an outdoor environment (see Fig. 9).
The dataset contains 931 tracks and 38 of them belong to the strangers. The number of regular
persons is 10. Five regular persons captured in different cameras and viewpoints are shown in
Fig. 10. Since most objects appear frequently in the camera network, the outdoor environment
can also be viewed as a relatively closed environment.

This dataset is more challenging than the indoor dataset for three reasons. First, three
regular persons leave the camera network for a long time and then re-enter. Second, the
illumination changes significantly over time in each camera view, as can be seen in Fig. 9a and
b. Finally, more regular persons exist in the outdoor dataset.
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Illumination variations have a great impact on our online gallery learning and updating.
There are two categories of illumination variations in the outdoor dataset: illumination
variations between cameras and illumination variations in each camera view over time.
Persons’ appearances in camera 1 are obviously darker than those in camera 2 because of
the backlight problem (see Fig. 10), and the illumination in each camera changes significantly
over time (see Fig. 9). Our dynamic gallery can deal with the first kind of variations since it has
different appearance models in different cameras. It has to be pointed out that, to some extent,
the overwriting mechanism of the feature pool can compensate for the light changes over time.
However, if we do not adjust the brightness and rely solely on the overwriting mechanism,
frequent illumination changes over time would significantly prevent the clustering progress
from getting to a stable state. There would be no adaptation of the gallery if the clustering is
unstable. To better deal with the second type of illumination variation, we use the brightness of
a static background as the standard and adjust the brightness of the following images to the
same value [23].

Clustering quality and the best estimated number of regular persons are shown in Fig. 11.
The small circles in Fig. 11b denote the time that the gallery is updated. Both the curves and
the marked points are sampled every 20 points to get a clear view.

Fig. 10 Sample images of five regular persons in different cameras and viewpoints

Fig. 9 Camera topology information of the outdoor scenario. a Dark scenes. b Bright scenes
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At the beginning, nbest is manually set to 2 (see Fig. 11b). The true number of regular
persons is 10, which is not included in the test range [n1, n2] ([9, 11]). From Fig. 11b we can
see that nbest gradually moves to ntrue (the true number of regular persons). There is a period
that nbest stays to be 9. This is because the appearance of person 1 and person 2 are similar (see
Fig. 10), and they are classified into the same cluster. The gallery obtained in this period is
incorrect. nbest reaches to 10 with the introduction of more data and remains stable for a long
time except for a few fluctuations. In this period, the gallery is correctly updated. After that, 3
regular persons leave the camera network and their features are gradually replaced by the
remaining 7 objects’ feature. Therefore, nbest falls to 7 after a period of fluctuations. Finally, the
3 objects re-enter to the camera network and nbest is updated to 10 again. Note that if we set a
larger size limit of the feature pool, the system may Bthink^ that no object has ever left. The
setting of the size limit depends on the intention of the user.

The outdoor dataset contains 931 tracks. For static gallery learning and the two invariant
feature based methods, the first 470 tracks are used as the training set to learn a gallery. The
remaining 461 tracks are used as the testing set. Re-identification results using different methods
in the outdoor dataset are given in Table 2. From this table we can see that, whether using feature
BFSCH^ or BFSCH+AR^, dynamic gallery learning performs better than static gallery learning.

Fig. 11 Illustration of decision making on the number of regular persons in the outdoor dataset. a Clustering
qualities. b The best number of clusters versus time

Table 2 Re-identification results in outdoor dataset

Methods Features Best θ Tracks
evaluated

Correct
decisions

Incorrect
type 1

Incorrect
type 2

Accuracy
(%)

Dynamic gallery FSCH 0.4 461 427 23 11 92.63

Dynamic gallery FSCH+AR 0.6 461 433 13 15 93.93

Static gallery [33] FSCH 0.35 461 426 10 25 92.41

Static gallery [33] FSCH+AR 0.6 461 430 8 23 93.27

Invariant feature [32] FSCH 0.1 461 306 13 142 66.38

Invariant feature [9] SDALF 0.35 461 319 35 107 69.19
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There are three regular persons leave and re-enter in the camera network in the 461 testing tracks.
As the static gallery of regular persons has already been learned using the training set, the change
of regular persons have little impact on static gallery. The dynamic gallery is data triggered, it has
to dynamically estimate the number of regular persons and update the gallery. As a result, the
change of regular persons has more impact on dynamic gallery. So the number of incorrect type 1
is higher for dynamic gallery learning than static gallery learning. However, the number of
incorrect type 2 is the lowest for dynamic gallery learning, indicting a higher quality gallery.
These can be attributed to the fact that, dynamic gallery learning can adapt to the illumination
variations in the outdoor environment. For static gallery learning, the appearance models remain
unchanged over time. Illumination changes will cause mismatch between the target and the
appearance models in the gallery. Our gallery learning framework, whether static or dynamic,
outperforms the invariant feature based methods: FSCH and SDALF. These results bear out the
benefit of introducing a multi-view gallery for person re-identification.

4.3 Runtime analysis

Table 3 illustrates the average time to update the gallery of our dynamic gallery learning
method in both indoor and outdoor experiments. Column Bactual ratio^ is ratio between the
actual time cost in the indoor experiment and the outdoor experiment. While column
Btheoretical ratio^ is the ratio computed using Eqs. (30) and (32).

All experiments are implemented in Visual C++ platform with an Intel 2.67GHz CPU.
Feature extraction and single camera tracking are not included in time measurement. The
whole system works in real time. The codes could be optimized to save about half of the
computational cost. Parallel computing using multiple CPU cores or GPU would further
reduce the average updating time.

According to Eq. (32), the computational cost of dynamic gallery learning is O(I⋅Nd⋅nwidth⋅
nbest), where I is the number of iterations of k-means clustering, Nd is the number of data, nwidth
is the estimating width, and nbest is the best estimated number of regular persons before this
updating. In the indoor experiments, the number of data is 220. The best estimated number of
regular persons remains to 4 for a long period (see Fig. 8b). In the outdoor experiments, the
number of data is 440. The best estimated number of persons remains to 10 for a long period
(see Fig. 11b). The number of iterations I is the same for both experiments. According to
Eqs. (30) and (32), the theoretical ratio of updating times for both experiments is 1:5. The
actual ratio is 1:3.14. The difference of the two ratios lies in that the best estimated number of
regular persons is not a constant value. We use a constant value to calculate the theoretical
ratio.

The time complexity of re-identification is O (Np), where NP is the number of regular
persons in the gallery. According to Table 3, the actual ratio and the theoretical ratio are
approximately the same. This is because the re-identification process does not involve any
unpredictable variables.

Table 3 Average Run Time of our Online Gallery Learning Framework

Methods Indoor experiments Outdoor experiments Actual ratio Theoretical ratio

Online Gallery learning 81.75 ms 257 ms 1 : 3.14 1 : 5

Re-identification 0.0061 ms 0.0152 ms 1 : 2.49 1 : 2.5
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5 Conclusions

In this paper, we proposed a multi-view gallery learning method for person re-identification,
regardless of the specific features adopted. The gallery contains the appearance models of the
regular persons in a relatively closed environment. Since the appearance models are accumu-
lated from different cameras and viewpoints for each object, they are robust to illumination
changes, pose variations and camera settings. With the learned gallery, re-identification
becomes the problem of finding the target from the gallery in the corresponding camera and
viewpoint. In addition, our gallery learning is dynamic and online.

Compared with static gallery, dynamic gallery is more adaptive to illumination
variations over time, and it is more convenient in application as it does not need a
training phase and human intervention. The computational cost of each updating of
the gallery is inexpensive and has great potential for improvement, which facilitates
real time applications. Our multi-view gallery learning method outperforms benchmark
appearance based methods in both indoor and outdoor datasets. The main drawback of
our method is that, it can only be applied to a relatively closed environment. The
appearance based methods do not have such a limitation.

Currently, the appearance models in the gallery preserve the visual cues the regular person.
As future works, the multi-view gallery method should learn a gallery that combines multiple
types of features, like gait and topology information. With the combined features, the gallery
should be able to deal with objects wearing similar clothes and objects changing their clothes.
Besides, the viewpoint of an object is evaluated by his moving direction. When the object
keeps still, the approach cannot get his viewpoint. This problem can be addressed using other
techniques in computer vision, like viewpoint estimation.
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